machine-learning-books
5 Free Must-Read Books for Machine Learning and Data Science

 1. Python Data Science Handbook

By Jake VanderPlas

The book introduces the core libraries essential for working with data in Python: particularly IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and related packages. Familiarity with Python as a language is assumed; if you need a quick introduction to the language itself, see the free companion project, A Whirlwind Tour of Python: it’s a fast-paced introduction to the Python language aimed at researchers and scientists.

  1. Neural Networks and Deep Learning
    By Michael Nielsen

Neural Networks and Deep Learning is a free online book. The book will teach you about:

  • Neural networks, a beautiful biologically-inspired programming paradigm which enables a computer to learn from observational data
  • Deep learning, a powerful set of techniques for learning in neural networks

Neural networks and deep learning currently provide the best solutions to many problems in image recognition, speech recognition, and natural language processing. This book will teach you many of the core concepts behind neural networks and deep learning.

  1. Think Bayes
    By Allen B. Downey

Think Bayes is an introduction to Bayesian statistics using computational methods.

The premise of this book, and the other books in the Think X series, is that if you know how to program, you can use that skill to learn other topics.

Most books on Bayesian statistics use mathematical notation and present ideas in terms of mathematical concepts like calculus. This book uses Python code instead of math, and discrete approximations instead of continuous mathematics. As a result, what would be an integral in a math book becomes a summation, and most operations on probability distributions are simple loops.

  1. Machine Learning & Big Data
    By Kareem Alkaseer

This is a work in progress, which I add to as time allows. The purpose behind it is to have a balance between theory and implementation for the software engineer to implement machine learning models comfortably without relying too much on libraries. Most of the time the concept behind a model or a technique is simple or intutive but it gets lost in details or jargon. Also, most of the time existing libraries would solve the problem at hand but they are treated as black boxes and more often than not they have their own abstractions and architectures that hide the underlying concepts. This book’s attempt is to make the underlying concepts clear.

  1. Statistical Learning with Sparsity: The Lasso and Generalizations
    By Trevor Hastie, Robert Tibshirani, Martin Wainwright

During the past decade there has been an explosion in computation and information technology. With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. This book describes the important ideas in these areas in a common conceptual framework.

Machine Learning Is the Future of Marketing. It is one of the booming technologies in today’s date. If you are looking for machine learning courses in pune then you can visit schoolofdigitalmarketing.co.in. Its-120 hour’s certification course providing in-depth exposure to Data Science, Big Data, Machine and Deep Learning.

Article credit: www.kdnuggets.com

machine-learning-courses-in-pune
Top 5 Recent Research on Machine Learning and Deep Learning

Machine learning and Deep Learning research advances are transforming our technology. Here are the 5 most important (most-cited) scientific papers that have been published since 2014, starting with “Dropout: a simple way to prevent neural networks from overfitting”.

Machine learning, especially its subfield of Deep Learning, had many amazing advances in the recent years, and important research papers may lead to breakthroughs in technology that get used by billions of people. The research in this field is developing very quickly and to help our readers monitor the progress we present the list of most important recent scientific papers published since 2014.

1. Dropout: a simple way to prevent neural networks from overfitting, by Hinton, G.E., Krizhevsky, A., Srivastava, N., Sutskever, I., & Salakhutdinov, R. (2014). Journal of Machine Learning Research, 15, 1929-1958. (cited 2084 times, HIC: 142 , CV: 536)

2. Deep Residual Learning for Image Recognition, by He, K., Ren, S., Sun, J., & Zhang, X. (2016). CoRR, abs/1512.03385. (cited 1436 times, HIC: 137 , CV: 582).
Summary: We present a residual learning framework to ease the training of deep neural networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.

3. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, by Sergey Ioffe, Christian Szegedy (2015) ICML. (cited 946 times, HIC: 56 , CV: 0).
Summary: Training Deep Neural Networks is complicated by the fact that the distribution of each layer’s inputs changes during training, as the parameters of the previous layers change.  We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs.  Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.

4. Large-Scale Video Classification with Convolutional Neural Networks , by Fei-Fei, L., Karpathy, A., Leung, T., Shetty, S., Sukthankar, R., & Toderici, G. (2014). IEEE Conference on Computer Vision and Pattern Recognition (cited 865 times, HIC: 24 , CV: 239)
Summary: Convolutional Neural Networks (CNNs) have been established as a powerful class of models for image recognition problems. Encouraged by these results, we provide an extensive empirical evaluation of CNNs on large-scale video classification using a new dataset of 1 million YouTube videos belonging to 487 classes .

5. Microsoft COCO: Common Objects in Context , by Belongie, S.J., Dollár, P., Hays, J., Lin, T., Maire, M., Perona, P., Ramanan, D., & Zitnick, C.L. (2014). ECCV. (cited 830 times, HIC: 78 , CV: 279) Summary: We present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding. Our dataset contains photos of 91 objects types that would be easily recognizable by a 4 year old. Finally, we provide baseline performance analysis for bounding box and segmentation detection results using a Deformable Parts Model.

Machine Learning Is the Future of Marketing. It is one of the booming technologies in today’s date. If you are looking for machine learning courses in pune then you can visit schoolofdigitalmarketing.co.in. Its-120 hour’s certification course providing in-depth exposure to Data Science, Big Data, Machine and Deep Learning.

Article credit: www.kdnuggets.com